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Introduction to Data Mining

Link Prediction

U Kang
Seoul National University

U Kang



k

g

: In This Lecture

{4
Rl

ro< 14
(SLE= B

S
g
l =c(2w
¥,
£

1’—(“4(<

2N

m Link prediction: problem definition, motivation, and
applications

m Methods
0 Based on node similarity
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®» [ Problem Definition
[0 Methods based on Node Similarity
[] Results based on Node Similarity

U Kang



k

g

w
<«

p 4

ro< 14

&K
YL
l S (2wl
vy,
S

3, L

Link Prediction Problem

m Given: a snapshot of a social network (or graph)

m Infer: which new interactions among its members
are likely to occur in the near future

U Kang
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Link Prediction

m Answer to the following question:

o To what extent can the evolution of a social network

be modeled using features intrinsic to the network
itself?

m “A network model is useful to the extent that it

can support meaningful inferences from
observed network data”
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Link Prediction

m Application
a Link recommendation (e.g. Facebook)
a Predict social network evolution (e.g. Twitter)

0 Suggest promising interactions or collaborations in a
company with hierarchical organization
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Data

m Co-authorship network from arXiv
o Astro-ph : astrophysics

d
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Cond-mat : condensed matter

Gr-qc : general relativity and gquantum cosmology
Hep-ph : high energy physics-phenomenology
Hep-th : high energy physics - theory
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Evaluation

m Choose four timestamps

at, < tf < t < t

m Use G[t,, t,'] as training data
o Predict future links

m Use G[t,, t,"] as test data

o Evaluate the prediction

U Kang
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V] Problem Definition

B [1 Methods based on Node Similarity
[] Results based on Node Similarity

David Liben-Nowell, Jon Kleinberg, The Link Prediction Problem for Social Networks
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Method for Link Prediction

m Rank according to the ‘similarity’: score(x,y)
2o Graph distance
o Methods based on node neighborhoods
o Methods based on the ensemble of all paths

o Higher-level approaches

m Can be combined with the approaches above

U Kang
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Graph Distance

m score(x,y) = (negated) length of shortest path
between x and y
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= Methods based on node
neighborhoods

['(x): set of neighbors of x

common neighbors ['(z)NT(y)
; . INESIRNEN
Jaccard’s coeflicient T(z)Ul(y)

Adamic/Adar Zzer[r)ﬁr[y] log |}‘{gj|

preferential attachment |I'(x)|- |T'(y)]
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%ﬁ* Common Neighbors and Jaccard’s
Coefficient

['(x): set of neighbors of x
'(x) ﬂ T(y)l
INESIRA
I'(z)ul’

common neighbors

Jaccard’s coetficient
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Adamic/Adar

Adamic/Adar

1
Z:er(x)nr‘(y) log |I'(2)|

log() improves the contribution of low degree nodes
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Preferential Attachment

['(x): set of neighbors of x

preferential attachment |I'(x)|- |T'(y)]

m Intuition: “rich gets richer” = power law

U Kang
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*BMethods based on the ensemble of
all paths

m Katz proximity

¢
D =1 3. |paths§g,g,|

where pathsffzj := {paths of length exactly ¢ from x to y}

(1)

weighted: paths; j := number of collaborations between z, y.
unweighted: pathsfcl,?)j := 1 iff z and y collaborate

a Solution: (I — M)t — 1

U Kang
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*BMethods based on the ensemble of
all paths

m Hitting time, commute time

hitting time —H,
stationary-normed — i g Ty

commute time —(Hzy + Hy z)
stationary-normed —(Hz gy my+ Hy g - )

expected time for random walk from z to reach y
stationary distribution weight of y
(proportion of time the random walk is at node y)

where H, ,
m

U
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~~Methods based on the ensemble of

all paths
m Rooted PageRank = (RWR)

stationary distribution weight of y under the following random walk:
with probability «, jump to x.
with probability 1 — @, go to random neighbor of current node.
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**Methods based on the ensemble of
all paths

m SimRank: score(x,y) is defined by

(1 itz=uy

{ Zuﬁl‘(:} Zbel‘{yj score(a,b)

L

0 Intuition: x and y are similar if its neighbors are similar

o The expected value of y! , where L is a random
variable giving the time at which random walks started

from x and y first meet
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Higher-Level Approaches

1. Low rank approximation of M by M,
0o “noise reduction” technique
o E.g.
m Ranking by the Katz measure on M,

m  Common neighbors using M,

m Score(x,y) =M, (x,y) n

> 5
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Higher-Level Approaches

1. Low rank approximation of M by M,
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Higher-Level Approaches

2. Unseen bigram

o Augment our estimates score(x,y) using values of score

(z,y) for nodes z that are similar to x
Nodes similar to x

Score:-:nweighted (3:: y) = ‘{Z zZ € F .‘

* B —
SCOrecighted (T, Y) = zEF( e , score(:

3. Clustering

o Delete weak edges, and recompute score(x,y)

U Kang
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Outline

V] Problem Definition

] Methods based on Node Similarity
B [ Results based on Node Similarity
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Performance

random predictor
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Performance

graph distance predictor
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Performance

common neighbors predictor
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Observation #1:

Similarities among Predictors
m Adamic/Adar ~ Katz ~ Low rank inner product
m Jaccard ~ rooted PageRank ~ SimRank

2 g &, :

| oz 2 2| 5| z| 3
| OEl Z| 2| = | 2| £ =] 2

=0 s 2| | | 2| | E| £l &
Adamic/Adar || 1150 638 [[ 520 [ 193 4420 1011l 905 [ ° 372 486
Katz clustering 1150 | 411 | 182 | 285§ 630 347 | 245 | 389
common neighbors 1150 | 135 506 | 494 467 | 305 | 332 489
hitting time 1150 87| 191 | 192 ] 247 ] 130 ] 156

Jaccard’s coefficient 1150 | 414

weighted Katz 1150 | 1 - 1. 474
low-rank inner product 1150 | 453 | 320 | 448
rooted Pagerank 1150 678 [§ 461
SimRank 9 423

unseen bigrams 1150

Figure 8 The number of common predictions made by various predictors on the cond-mat dataset
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Observation #2:

Implication of “Small World”
m Graph distance predictor does not work well
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Observation #3:

Collaborations beyond distance 2

m Many collaborations beyond distance 2

a 71 % (hep-ph), 83% (cond-mat)

astro-ph | cond-mat | gr-qc | hep-ph | hep-th

# pairs at distance two 33862 0145 935 JT68T 7045

# new collaborations at distance two 1533 190 68 945 335
# new collaborations h751 1150 400 3294 1576

Figure 10: Relationship between new collaborations and graph distance.

U Kang
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Observation #4:
Breadth of the data

m As the topical focus of the data set widens,
random prediction works poorly

STOC/FOCS | arXiv sections | all arXiv's | Citeseer
6.1 18.0—41.1 71.2 147.0

Performance of common-neighbor vs. random predictor

U Kang



- What You Need to Know

m Link Prediction Problem

o Infer which new interactions among its members are likely to occur in
the near future

m Methods

0 Graph distance, node neighborhood, ensemble of all paths, higher-
level approaches (e.g. low rank approx.)

m Results

o Some predictors work well (Common Neighbor, Adamic/Adar, Katz)
a Graph distance does not work well (“small world”)

U Kang
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Questions?



